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Abstract

The adhesion of films and coatings to rigid substrates is often measured using blister geometries, which are loaded
either by an applied pressure or a central shaft. The measurement will be affected if there are residual stresses that make
a contribution to the energy release rate. This effect is investigated using analytical solutions based on the principle of
virtual displacements. A geometrically nonlinear finite element analysis is conducted for comparison. Furthermore, the
relationships among strain energy release rate, load, deflection, and fracture radius are discussed in detail. Both ana-
lytical solutions and numerical results reveal that uniform tensile residual stresses reduce a specimen�s deflection if it
experiences plate behavior under small loads. However, this effect becomes negligible when membrane stresses induced
by the loading become dominant.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Blister tests are often used for measuring interfacial fracture energy between a coating film and the sub-
strate (Dannenberg, 1961; Williams, 1969). A thin film bonded to a substrate may be debonded by applying
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Fig. 1. Schematics of the loading configurations for (a) pressurized blister, (b) shaft-loaded blister (after Wan et al. (2003)).
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either a hydrostatic pressure or a central load, as shown in Fig. 1. The deformation mode in a blister film
experiences a transition from bending, when subjected to very small loads, to stretching under high loads.
In a bending analysis, the in-plane stresses in the specimen are ignored, while bending rigidity is not
considered during stretching analysis. A load–deflection curve is linear for a bending plate, but cubic for
a stretching membrane. Besides the conventional circular, unconstrained geometry, several alternative blis-
ter configurations have been proposed to measure the adhesion energy between thin films and rigid sub-
strates (Chang et al., 1989; Dillard and Bao, 1991; Wan, 2002; Sun et al., 2004). The following review
focuses on two standard blister geometries, which will be analyzed in detail later in the paper.

The most conventional blister geometry uses pressure to load a specimen. Bennett et al. (1974) investi-
gated the effect of specimen thickness on the elastic analysis of a pressurized blister, and conducted finite
element analysis (FEA) for verification. The analysis of blisters for thin films gained much attention.
Hinkley (1983) reported an approximate solution of the pressurized blister without residual stress based
on the assumption of a spherical cap for a loaded blister, but gave the wrong solution for the strain energy
release rate. Voorthuyzen and Bergveld (1984) solved numerically the von Karman equation for a pres-
surized blistering film with residual stress. Gent and Lewandowski (1987) later corrected the solution for
energy release rate by using a similar method. Allen and Senturia (1988) gave equations for both the
load–defection relationship and strain energy release rate for both circular and square specimens with con-
stant residual stress. Lin and Senturia (1990) and Sizemore et al. (1995) experimentally verified their elastic
model for thin flexible film and applied a perturbation of bending moment for thick films. Small and Nix
(1992) conducted finite element analysis to compare the accuracy of the analytical solutions based on dif-
ferent deflection profiles. Cotterell and Chen (1997) studied the transition from bending to stretching of a
blister geometry using Hencky�s series solution, and gave a polynomial expression for the strain energy re-
lease rate. Using the assumption of a uniform and isotropic membrane stress, Arjun and Wan (2005) gave
an approximate analytical solution for a pressurized blister without residual stress, and demonstrated the
transition from bending to stretching with increasing load. Recently, still based on the assumption of uni-
form and isotropic in-pane stresses, Wan et al. (2003) obtained an approximate analytical solution for a
clamped circular film in the presence of uniform residual tension (Arjun and Wan, 2005). Jensen and Thou-
less (1993) analyzed both tensile and compressive residual stresses in a blister specimen for both small linear
displacement limit (pure bending) and large nonlinear membrane-type limit (pure stretching). Sheplak and
Dugundji (1998) investigated the transition from bending to stretching of a circular plate�s deflection with
initial stretching using a finite difference technique, and found that tensile residual stress delayed the tran-
sition from bending to stretching.

An alternate way of applying load to a blister is by using a rigid shaft to displace the center of the deb-
onding film. Malyshev and Salganik (1965) studied the response of a penny-shape debond by treating the
coating as a bending plate. Jensen (1991) and Thouless and Jensen (1994) reported strain energy release
rates for a point loaded blister with and without residual stress. Williams (1997) reviewed the strain energy
release rate of peel and blister test for flexible films under both applied pressure and a point load. Wan and
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Mai (1995), Wan and Liao (1999) and Wan (1999) measured the adhesion energy between a polymer thin
film and rigid substrates using the shaft-loaded blister, and developed an approximate analytical solution
for the point loaded blister using the assumption of uniform and isotropic in-plane stress. This solution was
extended to the case with residual stresses (Wan et al., 2003). During a blister test, the interface is subjected
very high level stresses and undergoes inhomogeneous deformations. Large amounts of plastic deformation
may result and dominate the behavior during the test. Some researchers have worked on the elastic-to-plas-
tic deformation in blister tests (Thouless, 1994; Margaritis et al., 1994; Wan and Mai, 1995). This topic is
beyond the scope of this paper, so we will not discuss about it in this paper.

Although the blister geometry has been investigated intensively, less effort has been devoted to the tran-
sition behavior from bending to stretching. Most work emphasized either of the two limits. Furthermore,
the effect of tensile residual stress on this transition has obtained less attention.

In this paper, the strain energy release rate, G, was derived for a circular blister debonded from a rigid
substrate in the presence of uniform tensile residual stresses. The blister is subjected to either a uniform
pressure or a central point load. The relationships among G, load, deflection and debond radius are dis-
cussed. Furthermore, a geometrically nonlinear FEA is conducted to verify the analytical solutions, and
the discrepancy between analytical solutions and numerical results is investigated.
2. Analytical solution

Wan et al. (2003) reported the solutions for a circular plate stretched by an equal-biaxial membrane
stress N0 = r0t, where r0 is the tensile residual stress in film, and t is the film thickness. The plate is sub-
jected to various loading conditions. Three assumptions were adopted for the analysis: (i) the resultant
membrane stress, N = Nm + N0, where Nm is the membrane stress caused by applied loading, is constant
over the film area; (ii) the membrane stress is equal-biaxial, i.e. the radial and tangential stresses are equal,
Nr = Nt = N; and (iii) a small angle approximation is assumed, such that the gradient of the profile is small.
For convenience, a few useful non-dimensional parameters are defined as:
bm ¼ Nma2

D

� �1=2

; b0 ¼
N 0a2

D

� �1=2

; b ¼ ðNm þ N 0Þa2

D

� �1=2

; q ¼ pa4

2Dh
; u ¼ Fa2

2pDh
; W 0 ¼

w0

h

v ¼ G
pV =A

¼ G
Fw0=A
where D = Eh3/[12(1�m2)] is the flexural rigidity of plate, E is Young�s modulus, h is the plate thickness, m is
Poisson�s ratio of the plate, V is the blister volume, A = pa2 is the debonded area, a is the blister radius and
G is the strain energy release rate during debonding.

For simplicity, the relationship between pressure, p, or central point load, F, and central deflection, w0,
can be expressed in a general form: F / a�2wn

0 for the central point loaded blister and p / a�4wn
0 for the

pressurized case throughout the entire loading region. Here n can be determined from p or F, and w0.
Depending on the degree of deformation, n ranges from 1 to 3 as the dominant response goes from bending
to stretching.

2.1. Pressurized blister

The curves of u and q as a function of W0 for different b0 at the two limits are shown in Fig. 2(a). The
influence of b0 is important only in the bending and bending-to-stretching regimes. b0 delays the transition
from bending to stretching, but all the curves converge at the stretching limit.
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Fig. 2. Constitutive relations for the two blister geometries. Analytical solutions from Wan et al. (2003) are shown as lines and FEA as
data points: (a) pressurized blister, (b) central point loaded blister.
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Wan and Lim (1998) showed that v = (n + 2)/(n + 1) for a pressurized blister without residual stress,
thus 1.25 6 v 6 1.5. The lower bound corresponds to a pure stretching mode (n = 3), while the upper
bound to pure bending (n = 1). An explicit expression of v at the limit of bending region can be obtained
by ignoring the membrane stress caused by external loading, i.e. b = b0 where b is the total dimensionless
membrane stress. Similarly, v at the membrane limit can also be derived by ignoring b0, i.e. b = bm. How-
ever, in the transition zone, v cannot be expressed explicitly. When either the external pressure or the central
deflection exceeds a critical threshold, delamination may be driven along the film–substrate interface, or in
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some situations, fracture can proceed into either the film or the substrate. For the purpose of this paper,
we assume that debonding occurs at or very near the interface. The value of the fracture energy depends
on the strain energy release rate (SERR), G, which for a fixed pressure p, can be defined as
G ¼ d

dA
ðUp � UeÞ

����
p

ð1Þ
where the potential energy
Up ¼ pV ð2Þ
and the elastic energy stored in the elastic medium
Ue ¼
Z V

0

pdV ¼ 1

nþ 1

� �
pV ð3Þ
for an elastic film with p / a�4wn
0 and V / a2w0. Substituting (2) and (3) into (1) and assuming a constant n,
G ¼ n
nþ 1

� �
p

dV
dA

ð4Þ
thus
v ¼ n
nþ 1

� �
a

2V

� � dV
da

ð5Þ
In terms of the already defined variables, (5) can also be written as
v ¼ n
nþ 1

b0

2V
dV
db0

ð6Þ
The blister volume V can be obtained from integration and expressed simply as V = k2pa
2w0, where k2

varies from 1/3 to 1/2, depending on the type of film deformation. If q = k1(w0/h)
n, where k1 is a function of

membrane stress bm, and can be expressed from the solutions of q andW0 as reported in (Wan et al., 2003).
Therefore, V can be rewritten as
V ¼ p
2Dh

D
N 0

� �2
" #1=n

Dh
N 0

8<
:

9=
; V

a2h
1

q1=n

� �
b

2nþ4
n

0 ð7Þ
The variables in curly brackets are constants independent of a. Substituting (7) into (6), v can be found
as an explicit function of bm.

2.2. Central point-loaded blister

Following the procedure for G derivation in the preceding subsection, the normalized strain energy
release rate for the point loaded case, v, can be found to be
v ¼ n
nþ 1

� �
a

2W 0

� �
dW 0

da
ð8Þ
In terms of the already defined variables, (8) can also be rewritten as
v ¼ n
nþ 1

� �
br

2W 0

� �
dW 0

dbr

ð9Þ
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If dimensionless load u can be written as k(W0)
n, where k is a function of membrane stress bm, and can

be expressed from the solutions of q andW0 in Wan et al. (2003). Using the definition of u andW0 in (Wan
et al., 2003), W0 may be rewritten as
3
MM

4
AA
W 0 ¼
F

2pDh

� �
D
N 0

� �1=2
( )1=n

W 0

u1=n

� �
b2=n

0 ð10Þ
The variables in the curly brackets are constants independent of a. Substituting (10) into (9), v then can
be found as an explicit function of bm using a mathematics software such as MATHEMATICAMATHEMATICATM, 3 though the
lengthy solution is not given here. The full solution covers a number of pages in the MATHEMATICAMATHEMATICA codes.
3. Finite element analysis

In order to verify the preceding analytical solutions, a geometrically nonlinear finite element analysis
(FEA) was conducted using the commercial general FEA package ABAQUSABAQUS

�. 4 Axisymmetric quadratic
shell elements were adopted to model the film under different loading configurations. Biased meshes were
constructed at both the inner and outer boundaries of the membrane, using a length ratio between adjacent
elements of 1.25. A blister with a radius of 25 mm and thickness of 0.1 mm was modeled in the numerical
simulation. A Young�s modulus of 4 GPa and Poisson�s ratio of 0.35 was used to mimic a typical filled poly-
meric material. Equal-biaxial prescribed tensile stresses were applied to the model to simulate the uniform
residual stresses. Fig. 3 shows the meshes used for the two loading configurations. Results from the finite
element analysis have been shown in Fig. 2(a) and (b) to allow comparisons with the respective analytical
solutions.

The strain energy release rate during a blister�s delamination from a rigid substrate is determined using
the commonly adopted virtual crack closure technique (VCCT) (Rybicki and Kanninen, 1977; Raju, 1987).
This method was based on Irwin�s theory on fracture (Irwin, 1958) if a crack extends by a small amount Dc,
the energy released in the process is equal to that required to close the crack to its original length. Applying
VCCT to axisymmetric shell elements, the SERR components can be expressed as:
G ¼ 1

2Dc
ðZ1w2 þ R1u2 þM1h2Þ ð11Þ
where R, Z and M are the reaction forces and moment at the blister edge, u and w are the nodal displace-
ment components along r and z directions respectively, h is the rotation angle, and the subscripts denote the
corresponding nodes, all as shown in Fig. 4.
ATHEMATICAATHEMATICA is a mathematics software developed by Wolfram Research, Inc.
BAQUSBAQUS is a commercial FEA package developed by ABAQUSABAQUS, Inc.
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4. Discussion

4.1. Relationship between strain energy release rate and central deflection

Fig. 5 shows the curves indicating the relationship between the non-dimensional strain energy release
rate, v, and non-dimensional central deflection W0 = w0/h. The normalized residual stress b0 varies from
zero to 50. Generally, b0 tends to reduce the value of v when W0 is small, corresponding to bending re-
sponse, but all the curves for different b0 continuously converge to the same v value (vstretching = 1.25 for
a pressurized blister, and vstretching = 0.25 for the point loaded case) when W0 is significantly large so that
stretching in the plate is dominant. When b0 is sufficiently large (>50) and W0 is sufficiently small (<0.1), v
reaches constant asymptotic values for the two loading cases (1 for pressurized case and 0 for point loaded
situation, respectively) independent of b0 even at low W0 limits. The degree of the agreement between the
analytical solutions and FEA results is different for the two loading conditions. For pressurized case, ana-
lytical solutions agree with FEA data almost perfectly throughout entire loading range. As to pointed
loaded situation, notable discrepancy between analytical solutions and FEA results was observed near
the stretching limit, though they agree with each other very well at the bending end where W0 is small.
As discussed in Wan et al. (2003) the assumption of equal-biaxial membrane stresses holds reasonably well
for the pressurized blister case, but is only a first approximation for pointed loaded configuration if loads
are large.

In the following discussions, the relationships between load, central deflection, and blister radius during
debonding are discussed. The following non-dimensional parameters are defined to facilitate the discussion:

Non-dimensional fracture toughness: C ¼ G
D=h2

Non-dimensional pressure: P ¼ p
D=h3

Non-dimensional point load: U ¼ F
D=h

Non-dimensional blister radius: a = a/h

C is around the range of 0.01 if using the material properties and specimen dimensions used for the FEA
analysis and taking G ¼ 100 J/m2 to represent a typical interfacial fracture toughness between a polymeric
film and silicon substrate (Hohlfel et al., 1997). Therefore, C = 0.01 is chosen in the following discussions to
simulate the typical polymeric thin film system. Because the expressions of the solution based on the uni-
form and isotropic membrane stress are so complicated that symbolic algebra seems too difficult to operate,
Only the FEA results are discussed in the following.

4.2. Relationship between critical central deflection and debond radius

Fig. 6 shows the central deflection W0 as a function of debond radius a at constant C = 0.01. b0 ranges
from 0 to 50. This figure physically illustrates how central deflections changes with debond radius during
blister experiments. It can be seen from the figures that W0 / am with 1 6 m 6 2. In the bending dominant
region (small w0), m = 2 and in the stretching dominant region (large w0), m = 1. The mixed bending and
stretching transition possesses an intermediate m value.
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4.3. Relationship between applied pressure/load and debond radius

Another blister test procedure requires debonding load and fracture radius for fracture energy measure-
ment. U and P as functions of a are illustrated in Fig. 7 for C = 0.01.

For the pressurized blister (Fig. 7(a)), P / aq with �2 6 q 6 �1. In the bending dominant region (small
a), q = �2 and in the stretching dominant region (large a), q = �1. The mixed bending-to-stretching tran-
sition is a function of b0 and possesses an intermediate q value. The tensile residual stress delays the tran-
sition from bending to stretching. Note that (dP/da) is negative in the entire range of a such that the
delamination process is always unstable. Once equilibrium is reached, a small increase in applied pressure
or load will lead to a spontaneous catastrophic delamination.
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For the central point loaded blister (Fig. 7(b)), U / ar with 0 6 r 6 1. In the bending dominant region
(small a), r = 0 such that U is a constant independent of a and solely depends on b0 as shown. Since (dU/
da) = 0 in this region, the delamination is in a neutral equilibrium, i.e. delamination continues to grow at a
constant applied load (Wan and Mai, 1995). The film�s response gradually turns into membrane stretching
as a increases. Here U becomes linear with a and r = 1 (Williams, 1997). Note that the delamination process
is stable in the stretching dominant range because (dU/da) > 0. All the curves with different b0 approach the
same asymptote at large a. A film delaminating in a neutral equilibrium fashion at small a will eventually
come to a halt once the linear U(a) branch is reached.
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4.4. Relationship between debonding load and displacement

The compliance of a specimen during fracture tests is often used for G measurement, thus an understand-
ing of how load changes with displacement is important. Fig. 8 illustrates the non-dimensional pressure or
point load as functions of central deflection in the presence of tensile residual stresses.

For the pressurized blister (Fig. 8(a)), no difference is observed between the relationship between P and
W0 throughout the bending and stretching regions, and can be approximately expressed as P / W �1

0 . This
is in consistent with our earlier prediction such that (C/PW0) = 0.5 in the bending dominant region and
(C/PW0) = 5/8 in the stretching dominant region (Arjun and Wan, 2005).

For the central point loaded blister, U / W b
0 with 0 6 b 6 1, similar to the behavior of U(a) (c.f. Fig.

8(b)). In the bending dominant region (small W0), b = 0 such that U is a constant independent of a and
solely depends on b0 as shown. The film�s response gradually turns into membrane stretching as W0
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increases. Here U(W0) becomes linear with b = 1. All the curves with different b0 approach the same asymp-
tote at large W0.

4.5. Comparison with other solutions

Pressurized blisters have received many researchers� attention for a long time, and many solutions have
been reported, some of which are explicit polynomial expressions. Therefore, it is instructive to compare
those solutions with what was reported in this paper. Table 1 lists these solutions for comparison, and
Fig. 9 shows q versus W0 relationships from different solutions and FEA results. Solutions of Allen
and Senturia (1988) and Sizemore et al. (1995) are correct only for membrane films if residual stress is



Table 1
Comparison of the solutions for pressurized blister geometrya

Authors q G=ðpV =AÞ
Gent and Lewandowski (1987)b 18:82W 3

0 1.125

Allen and Senturia (1988) 20:8W 3
0 þ 2b2

0W 0
15W 2

0þ1:15b2
0

12W 2
0þ1:15b2

0

Lin and Senturia (1990) 32W 0 þ 21:88W 3
0 þ 2b2

0W 0 Not provided

Sizemore et al. (1995) 19:6W 3
0 þ 2b2

0W 0
359W 4

0þ42:4W 2
0b

2
0þb4

0

28:7W 4
0þ39:1W 2

0b
2
0þb4

0

Williams (1997) Not provided
15W 2

0þ1:15b2
0

12W 2
0þ1:15b2

0

a Poisson�s ratio m = 0.3 for calculation.
b Residual stress is not considered.
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Fig. 9. Constitutive relations for the pressurized blister geometry from different solutions listed in Table 1. Data points are FEA results
as comparison. The lines for non-zero b0 from Allen and Senturia (1988), Sizemore et al. (1995) and Lin and Senturia (1990)
superposed with FEA results.
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not present. For the cases with residual stresses, however, they show encouraging agreement with FEA
models. The solution proposed in this chapter can capture the response from bending to stretching, thus
is more complete.

Fig. 10 shows v versus W0 for a pressurized blister. As to the G calculation, only three explicit solutions
were found and significantly different shapes were observed for different solutions, although they agree with
each other in the stretching limit. The three solutions predict different values at the bending limit, and two
of them deviate from FEA results. All solutions indicate that uniform tensile residual stresses delay the
transition from bending to stretching. But, FEA results reveal that residual stress also changes the behavior
in the bending-controlled domain, thus, attention should be given when such solutions are applied to prac-
tice. There is a good agreement between Wan�s model and FEA.
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Fig. 10. Normalized strain energy release rate as a function of central deflection W0 from the solutions listed in Table 1 for a
pressurized blister. FEA results are shown as data points for comparison.
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5. Conclusions

The deformation and delamination behavior of a circular blister under both pressure and central point
load were investigated over a wide range of transverse loadings and initial in-plane uniform tensile stresses.
If the blister is very thin or flexible, the residual stress can be ignored for deflection and G calculation using
either measured load or displacement data. However, when bending or bending-to-stretching transition
behavior is significant during the debonding process, the residual stress must be taken into account, and
the correct equations should be adopted to measure the adhesion energy. The results reported in this paper
will be useful to the engineers intending to measure residual stresses of thin films, and also for character-
izing the adhesion energy between a thin film and rigid substrate using one of the two geometries.
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